3. We find the diameter of the spot from the definition of radian angle measure.

46. (a)

(®)

(©

diameter

§=——— — diameter = fr = {1_4 X lﬂ'iracl:]{?r.ﬂxlﬂsm) =

Earth-Moon

rE.’rt'_'.—}iom

The free body diagrams are shown. Note that only the forces producing
torque are shown on the pulley. There would also be a gravity force on
the pulley (since it has mass) and a normal force from the pulley’s
suspension, but they are not shown.

Write Newton’s second law for the two blocks, taking the positive x
direction as shown in the free body diagrams.

m, : E.F_t =F, -m,gsing, =m,a —
Fp, =m,(gsing, +a)

= (8.0kg)| (9.80m/s’ ) sin32°+1.00m/s’ | = 49.55N

= (2 sig fig)

- N - : _ _
m D F=mpgsmé, —Fp =m

- a —

B
F_=my(gsiné, —a)

=(10.0kg)[ (9.80m/s* )sin61° - 1.00m/s’ | = 75.71N

The net torque on the pulley is caused by the two tensions. We take clockwise torques as

positive.

S r=(Fp - Fg)R=(7571N-49 55N)(0.15m) = 3.924m.N = [3 9m.N]

5300m

Use Newton’s second law to find the rotational inertia of the pulley. The tangential acceleration
of the pulley’s rim is the same as the linear acceleration of the blocks, assuming that the string

doesn’t slip.

Sr=la=l_=(F-Fy)R =
F.—-F_)R 7571N —49.55N)(0.15m)’ 1
o FaF )R )(015m)’ e

a 1.00m/s’




51. We assume that m_ > m,, and so m; will accelerate down, m, will

+6
accelerate up, and the pulley will accelerate clockwise. Call the direction of @
acceleration the positive direction for each object. The masses will have the -
same acceleration since they are connected by a cord. The rim of the pulley Fry F.,
will have that same acceleration since the cord 1s making it rotate, and so 1
&, ... =a/R. From the free-body diagrams for each object, we have the =

following. 1 ) |

ME,=F,-mg=ma — F,=mg+ma sy | my| |mg |4y

N F —me—F_ = e —i |
D Fp=myg—Fp=mga — Fg=myg—-ma )

a - _
TI:EE?'—FTAFZIQ:I— mMug  Mgg
= R

Substitute the expressions for the tensions into the torque equation, and solve for the acceleration.

FTBR—FTAR:I% — (mBg—ch:r]R—{mﬂg+m_,ta}R:I% —

(mg —m, )

(my +mg + I/R )"

a=

If the moment of inertia 1s ignored. then from the torque equation we see that F, = F,. and the

_ _ m,—m, | . _ L
acceleration will be |a,_, = EB—* g| We see that the acceleration with the moment of inertia
m, +g )
a B )

included will be smaller than if the moment of inertia is ignored.

E[ The only force doing work in this system 1s gravity, so mechanical energy 1s conserved. The initial
state of the system 15 the configuration with m, on the ground and all objects at rest. The final state
of the system has m, just reaching the ground, and all objects in motion. Call the zero level of

gravitational potential energy to be the ground level. Both masses will have the same speed since



they are connected by the rope. Assuming that the rope does not slip on the
pulley. the angular speed of the pulley 1s related to the speed of the masses
M

by @=v/R. All objects have an initial speed of 0
E=E, —
It +imyt + 11’ +m, gy, +mogy, =%m_j_1-‘_i—%m3v;+%fmj
+ M, 8V, +MaEY,, mz
: ‘~ +
mgh=2+m,v, ++m 1 +m, gh hi
&M = 7 MV, T35y 2 A& Ma i
) L]
2(m.—m, ) eh 2(380kg—-35.0kg 9.80m/s’ 2.5m)
Ve = ( 2 ")E = ( £ }( ,'f ]{ - =|l4m/s
(my +mg++M) (38.0kg+35.0kg+(+)3.1kg)

94 Since frictional losses can be 1ignored, energy will be conserved for the marble. Define the 0 position
of gravitational potential energy to be the bottom of the track, so that the bottom of the ball 1s
1n1tlall‘i. a height i above the 0 position of gravitational potential energy. We also assume that the



marble is rolling without slipping, so @ =v/r, and that the marble is released from rest. The marble

has both translational and rotational kinetic enerpy.
(@) Since r << R, the marble’s CM is very close to the surface of the track. While the marble is on

the loop, we then approximate that its CM will be moving in a circle of radius R, When the
marble 1s at the top of the loop, we approximate that its CM 15 a distance of 2R above the 0
position of gravitational potential energy. For the marble to _]llSt be on the verge of leaving the
track means the normal force between the marble and the track 1s zero, and so the centripetal
force at the top must be equal to the gravitational force on the marble.

mv? oo

| 2
= =g 3 Vi = ER

loop
Use energy conservation to relate the release point to the point at the top of the loop.
E .= E . & K. tU,..=K_ ,+U

releass 10D of zleaze releaze top of wop of
loop loop Ioap

2R=1; L2yt 2 2
0+mgh=3mv mr+ Lw, mpm,+mg R=3 npuf+3|:smr} ?.3 + 2mgR

laop loop loap
mgh = %mv;w +2mgR = ;mgR+2mgR =27mgR — |h=2.R
loop
(b) Since we are not to assume that 7 << R, then while the marble 15 on the loop portion of the
track, it 1s moving in a circle of radius R — 7, and when at the top of the loop, the bottom of the

marble 1s a height of 2(R - ) above the 0 position of gravitational potential energy (see the

diagram). For the marble to just be on the verge of leaving the track means the normal force
between the marble and the track is zero, and so the centripetal force at the top must be equal to
the gravitational force on the marble.

N
jnl:mp of

loop 2
—=m — v .= R—-r
R—?" g I.J:gpo. g( ]

Use energy conservation to equate the energy at the release pomt to
the energy at the top of the loop.

E = E:u_:! of — K zleaze + erale;.se = Kto]: of + ["rmpocf

loop Loop loop

relaass

S N o - S {20
=|Flmf+ Immpm, mg2(R—-r)=+1my mf+ {3.}??;'
loco loop loop

0+mgh=3mv

mgh=ZFmvy . +2mg(R-r)=Fmg(R-r)+2mg(R-r)=27Tmg(R-r)

loop

h=27(R-r)

98. (@) If there is no fiiction, then conservation of mechanical energy can be used to find the speed of
the block. We assume the cord unrolls from the cylinder without slipping, and so

Vi = Vegg = @ . We take the zero position of gravitational potential enerpy to be the



bottom of the motion of the block. Since the cylinder does not move vertically, we do not have
to consider its gravitational potential energy.
E = Eﬁnnl - Lrl:l;t.’.l = Kﬁr_d = K’:l'.:}ck +K -

initial cylmdar

. : . : e
mgh=3imv +i+lew” — mgDsmé=1m" +%{%MR' )| -
) i i o \ R™ )

2; - 2(3.0ke)(9.80m/s” )(1.80m)sin27°
V= r:.thsm?: ( g_}( - H ) =1570m/s =|1.6m/s
(m+iM) (19.5kg) '

(b) The first printing of the textbook has « = 0.055, while later printings
will have ¢ =0.035. The results are fundamentally different in the

two cases. Consider the free body diagrams for both the block and the E.
cylinder. We make the following observations and assumptions. Note
that for the block to move down the plane from rest, F. <mg. Also

—

note that mg < 0.1Mg due fo the difference in masses. Thus
F. <0.1Mg. Accordingly, we will ignore F. when finding the net

vertical and horizontal forces on the cylinder, knowing that we will make less than
a 10% error. Instead of trying to assign a specific direction for the force of i
friction between the cylinder and the depression ( F, ), we show a torque in the !
counterclockwise direction (since the cylinder will rotate clockwise). Finally, we S Ty

assume that Ff_,] = ..-:.-:F,‘.l = ulMe. Mg,

Write Newton’s second law to analyze the linear motion of the block and the rotational motion
of the cylinder, and solve for the acceleration of the block. We assume the cord unrolls without
slipping.

ZFS_ =F,—-mgecosd=0 — F, =mgcost

<~ Ca o B
D Fo=mgsmb—F —F  =mgsme—F —umgcost =ma

T

[]

r=FR-71, :FTR—;;FX_?R:ER—#MgR:Iar:I%:%MRG —

F, —uMg =1Ma

Add the x equation to the torque equation.

mgsing - F, — umgcos@ =ma ; F, —uMg=1Ma —

mg s @ — uMg — umgceos =ma+iMa —
m(sin6 — ucos8)— uM

(m+331)
(3.0kg)(sin27° - 0.055c0527°) — (0.055)(33kg)
(19.5kg)

object cannot accelerate UP the plane from rest. So the conclusion 1s that object will not move
with g =0.055. The small block 1s not heavy enough to move itself rotate the cylinder, and

a=g

If u=0055 a=¢g =-0.302 m.fs‘? . But the

overcome friction.

(3.0kg)(sm27°—0.035c0527°) —(0.035)(33kg)

=0.057m/s".
(19.5kg)

If u=0035 a=¢g



Use Eq. 2-12¢ to find the speed after moving 1 80 m.

vi=vi42ase — v=\{2{D.05?mﬁs-’)(1_amn} =10.45m/s|.




