]ﬂ The potential energy of the spring 15 given by U = H:r] where x 1s the distance of stretching or

compressing of the spring from its natural length.

16. (a)

(&)

2(35. :]I
\/ZL : = 0974m
82. DNJ.fm

Since there are no dissipative forces present, the mechanical energy of the person—trampoline—
Earth combination will be conserved. We take the level of the unstretched trampoline as the
zero level for both elastic and gravitational potential energy. Call up the positive direction.
Subscript 1 represents the jumper at the start of the jump. and subscript 2 represents the jumper
upon arriving at the trampoline. There 1s no elastic potential energy involved in this part of the

problem. We have v, =4 5m/s. 1, =20m and y, =0. Solve for v, the speed upon arriving
at the trampoline.

E=E — ";mvfﬂngvl:;‘mv: +mgy, — %mv._:+mg;1-'._ =%nw§+0 —

v =i + 200, =£,/(4.5m/s)’ +2(9.80m/s*)(2.0 m) = +7.710m/s ~

The speed 1s the absolute value of v,.

MNow let subscript 3 represent the jumper at the maximum stretch of the trampoline, and x
represent the amount of stretch of the trampoline. We have v, =—7.710m/s, »,=0. x, =0,

v, =0, and x, =y,. There is no elastic energy at position 2. but there 1s elastic energy at
position 3. Also, the gravitational potential energy at position 3 15 negative, and so 3, <0. A
quadratic relationship results from the conservation of energy condition.

E,=E, — imv+mgy, +1k =im] +mgy, +ikbi —

Ly} +0+0=0+mgy, +1ky; — ikl +mgy,—1m =0 —

—ing + .Jm:g: —4(1k) (—%nwi} _—mgtam'g’ +ho;

B 2(5k) ) k

—{?Ekg}(Ei.BDm_,-"rsi}:I:J(?Ekg]z (9.80m/s”) +(5.8x10° N/m)(72ke)(7.71m/s)’
(5.8x10° N/m)

=—0284m, 0.260m

Smce y, <0 .y, = . .

The first term under the quadratic 15 about 500 times smaller than the second term, indicating
that the problem could have been approximated by not even including gravitational potential
energy for the final position. If that approximation were made, the result would have been
found by taking the negative result from the following solution.

E,=E, — tm=1h; — y=v ||E=I:??1m,f5) 2% 097m
P P N E 58x10*N/fm



20. Simce there are no dissipative forces present, the mechamical energy of the roller coaster will be
conserved. Subscript 1 represents the coaster at point 1, etc. The height of point 2 1s the zero

location for gravitational potential energy. We have v, =0 and y, =32m.

S 2 2 2
Pomt 2: %mv-_ +mgy =%}m»‘2 tmgy, [ yy=0 —= mgy = %mv! —

v, =428y, = \/2 [:'9.80111/52}{32111) =|25mys
Point 3: 1wy +mgy, =imv] +mgy, 3, =26m — mgy, =tmv] +mgy, —
v, = J2g|:_1»'] -y = J2{59.80m;;52){6m] =(11m/s

Point 4: T??ﬁ‘\f +mgy, = %mv; +mgy, 1y, =14m — mgy, = ;mmf +mgy, —

v, =y28(n-y.) = \/2(9.80111,#"52}(18111) =|19m/s
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42.

(a)

(b)

(€)

(a)

Draw a free-body diagram for each block. Write 4_
Newton's second law for each block. Notice that the VB F;
acceleration of block A in the y, 15 0 zero. '
"Z‘
M F,=F,-mygecosf=0 — F,=m,gcosé '
. Mgg
Y Fy=F —mgsnf=m,a, :

YE,=mg-F =mga, — F =m (g+ ag) lm.-tg
Since the blocks are connected by the cord,

a;p =a, =a. Substitute the expression for the tension force from the last equation nto the x
direction equation for block 1, and solve for the acceleration.

mylg+a)-mgsmb=ma — myg-—m,gsmb=m,a+ma

my—m,siné| .
a :gw :{Q.SUm/s‘ |
(m, +my) : '

(5.0kg —4.0kgsin32°)
9.0kg

Find the final speed of m, (which 1s also the final speed of m, ) using constant acceleration

=3.1m/s

relationships.

; 2 g —m, sin @
v, = 'I..'s +2(I.-i.1-' — 1,."; — zg(ﬂ’—'\)h —
’ ' (m, +my)

my — m, sin 6 . _ - ——
) (m, +myg) ' ' 9.0kg

Since there are no dissipative forces in the problem, the mechanical energy of the system 1s
conserved. Subscript 1 represents the blocks at the release point, and subscript 2 represents the

blocks when my reaches the floor. The ground is the zero location for gravitational potential

=|2.2m/s

energy for m,, and the starting location for m, 1s ifs zero location for gravitational potential
energy. Since mig falls a distance i, m, moves a distance / along the plane, and so rises a
distance 7smé&. The starting speed 1s 0.

E =E, — 0+mygh=1(my +my)v, +mgghsmé —

I : A}
M, — g siné
v, =, |2gh) =—F2— |

. m, +mg

J

This 15 the same expression found in part (5), and so gives the same numeric result.

Use conservation of energy. Subscript 1 represents the block at the compressed location, and
subscript 2 represents the block at its maximum position up the slope. The initial location of the
block at the bottom of the plane is taken to be the zero location for gravitational potential
energy (v = 0). The vanable x will represent the amount of spring compression or stretch. We

have v, =0, x, =050m, y, =0, v, =0, and x, =0. The distance the block moves up the

o

plane is given by 4 = . S0 ¥, =dsiné. Solve ford.

sing



1 2 1 2
E =E, — <mv, +mgy ++ke =imv, +mgy, + 1k, —

: o} 75N/m)(0.50m)’
e, =mgy, =mgdsind — d= L= (T5N/m)( R }
) 2mgsind  2(2.0 kg}{Q_SO m/s* )sin41°
(b) Now the spring will be stretched at the turning point of the motion. The first half-meter of the
block’s motion returns the block to the equilibrium position of the spring.  After that, the block
beings to stretch the spring. Accordingly, we have the same conditions as before except that
x=d-05m

=10.73m

b |

E =E — im]+mgy +ikd =im] +mgy, + 1kl —
L :mgdsin6+%k[d—0_5m}

This 15 a quadratic relation in d. Solving 1t gives d = .

W::Tf moves d = 0.50m, and stops at the equilibrinm point W
Accordingly,
s SKIP PART (c)

‘u = 2 — =
B (75N/m)(0.50m)’

~ 2(2.0kg)(9.80m/s*)(0.50m)cos41°

.mgd cos8  —

—tan41° =040

{a) The tension in the cord 1s perpendicular to the path at all imes, and so the tension m the cord
does not do any work on the ball. Thus only gravity does work on the ball, and so the
mechanical energy of the ball is conserved. Sul:nscrlpt 1 represents the ball when it is horizontal
and subscript 2 represents the ball at the lowest point on its path. The lowest point on the path

1s the zero location for potential energy (.1- =0). Wehave v, =0. y,=#¢, and y, =0. Solve

for v,.

E=E — Ymv +mgy=imi+mgy, — mgf=1m; — v, =|2gf

(b) Use conservation of energy, to relate points 2 and 3. Pomnt 2 is as described above. Subscript 3
represents the ball at the top of its circular path around the peg. The lowest pomt on the path 1s

the zero location for potential energy (v =0). We have v, =4/2g¢, y, =0, and
v, =2(f-h)=2(£-080¢)=040¢. Solve for v,

9 ] . 3 .
E,=E, — 1mv,+mgy,=1mv; +mgy, — +m(2gf)=1mv; +mg(040¢) —

=.J12g¢




Consider the free-body diagram for the coaster at the bottom of the loop. The net
force must be an upward centripetal force.

beitom. bottom.
Now consider the force diagram at the top of the loop. Again, the net force must be
centripetal, and so must be downward.
2 2
ZFW =F; +mg:mm‘m_f}€ — F, :mvm_,fﬂ—mg. -
op fep F.,]

Lol

N

Je”

mg

mg

Assume that the speed at the top 1s large enough that F,, >0, and so v, > +/Rg. *

top

Now apply the conservation of mechanical energy. Subscript 1 represents the coaster at the bottom
of the loop, and subseript 2 represents the coaster at the top of the loop. The level of the bottom of

the loop is the zero location for potential energy (¥ =0). We have y;=0and y;=2R.

E=E — Ym+mgy =iml+mgy, — i

Tbottom

= "12.,; +4gR

The difference in apparent weights is the difference in the normal forces.

E, —F, =(mg+mv,/R)-(m Vip ;"rR —mg ) = 2mg +m (Ve — Vi ]’/"R
botiom won

=2mg+m(4gR)/R = 6mg.

Notice that the result does not depend on either vor R .



90. (a) Draw a free-body diagram for the block at the top of the curve. Since the

block 1s moving in a circle, the net force 1s centripetal Write Newton’s /—\

second law for the block, with down as positive. If the block is to be on F,||mg
the verge of falling off the track. then F, =0.

_ R 2. - R L .
> B =F +mg=my fr - mg=mvy [r — v =g
Now use conservation of energy for the block. Since the track is frictionless, there are no non-

conservative forces, and mechanical energy will be conserved. Subscript 1 represents the block
at the release point, and subscript 2 represents the block at the top of the loop. The ground is

the zero location for potential energy (¥ =0). Wehave v, =0, y =h. v,=,/gr. and y, =2r.
Solve for h.
2 3
E =E, — $mv +mgy, =+mv, +mgy, — 0+mgh=1mgr+2mgr —

(b) See the free-body diagram for the block at the bottom of the loop. The net
force 1s again centripetal, and must be upwards.
EFR =F,—-mg=in 1-'],.*";" — F,=mg+m 1-;““ fll?'
The speed at the bottom of the loop can be found from energy conservation,
similar to what was done in part (a) above, by equating the energy at the
release point (subscript 1) and the bottom of the loop (subseript 2). We now have v, =0,

w =2h=>5 and y, =0. Solve for v,.

2 2 2
E =E, — 1mv+mgy=imv+mgy, — 0+5mgr=1mvg.,+0 —

4

Voo = 1087 — F,=mg +m 1-';mm;'r:" =mg +10mg = (1lmg
(c) Again we use the free body diagram for the top of the loop, but now the normal force does not
vanish. We again use energy conservation, with v, =0, », =3r, and y, =0. Solve for v,.
ZFR =F,+mg=m 1-'],"'?' — E,=m 1-'3@/'?'—5:@

2

— [ R , v — Ly
E =E, — qmvy+mgy=ymv;+mgy, — 0+3mgr=omv +0 —

2 2

Vi =687 = Fy=mv, #-’f F—ing = 6mg —mg =|5mg
(d) On the flat section, there i1s no centripetal force, and F, = .



